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b LAMATH, ISTV2, Université de Valenciennes, Le Mont Houy, 59313 Valenciennes cedex 9, France

Received 10 October 2005; accepted 7 December 2005
Available online 23 January 2006

Abstract

In this paper, we classify 3-dimensional minimal CR submanifolds M of the nearly Kähler 6-
dimensional sphere which satisfy Chen’s basic equality, i.e. δM (p) = 2, where δM (p) = τ(p) − inf K (p),
for every p ∈ M .
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1. Introduction

Submanifolds of the nearly Kähler 6-dimensional sphere S6(1) have been an active field of
research for years and many authors have described a lot of interesting geometric properties of
these submanifolds (see for example [7,10,12,18]).

Considering R7 as the imaginary Cayley numbers, it is possible to introduce a vector cross
product × on R7, which in its turn induces an almost complex structure J on the standard unit
sphere S6 in R7 which is compatible with the standard metric. It was shown by Calabi and Gluck,
see [4], that this structure, from a geometric viewpoint, is the best possible almost complex
structure on S6(1). Details about this construction are recalled in Section 2.
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With respect to the almost complex structure J , in the study of submanifolds, it is natural to
study submanifolds for which J maps the tangent space into the tangent space (and hence also
the normal space into the normal space) and those for which J maps the tangent into the normal
space. The first class are called almost complex submanifolds and it was shown by Gray in [14]
that they have to be two-dimensional (complex one-dimensional).

The second class of submanifolds mentioned, which by its definition have to be 1-, 2- or
3-dimensional, are called totally real submanifolds. By definition every curve is totally real.
Minimal totally real surfaces have been studied and characterized in [2] and [3]. A 3-dimensional
totally real submanifold is called a Lagrangian submanifold. In that case the almost complex
structure exchanges at each point the tangent and normal space. These submanifolds were first
investigated by Ejiri, [12], who showed that a Lagrangian submanifold is always orientable and
minimal.

Further, let M be a submanifold in the nearly Kähler 6-sphere S6(1). A subspace V ⊂ Tp M
is called totally real if J V ⊂ T ⊥

p M , where Tp M and T ⊥
p M denote the tangent space and the

normal space of M at p, respectively. A submanifold M of S6(1) is called a CR submanifold
if there exists on M a differentiable holomorphic distribution H (i.e. JH = H) such that its
orthogonal complementH⊥

⊂ T M is a totally real distribution [1]. A CR submanifold is called
proper if it is neither totally real (i.e.H⊥

= T M) nor holomorphic (i.e.H = T M).
On the other hand, for a Riemannian n-manifold Mn denote by K (π) the sectional curvature

of a plane section π ⊂ Tp Mn , p ∈ Mn . For an orthonormal basis e1, . . . , en of the tangent space
Tp Mn , the scalar curvature τ at p is defined by

τ =

∑
i< j

K (ei ∧ e j ).

For each point p ∈ Mn , let (inf K )(p) = inf{K (π) : plane sections π ⊂ Tp Mn
}. Then inf K

is a well-defined function on Mn . Let δM denote the difference between the scalar curvature and
inf K , i.e.,

δM (p) = τ(p) − inf K (p).

It is obvious that δM is a well-defined Riemannian invariant which is trivial when n ≤ 2 (cf. [5]
for details).

For a submanifold Mn in a Riemannian manifold Rm(c) of constant sectional curvature c, the
following basic inequality involving the intrinsic invariant δM and the squared mean curvature
H2 was first established in [5]:

δM ≤
n2(n − 2)

2(n − 1)
H2

+
1
2
(n + 1)(n − 2)c. (1)

It is a natural and very interesting problem to study and to understand submanifolds which
satisfy the equality case of this inequality, which is known as Chen’s basic equality (see, for
example [9]). For such submanifolds there is a canonical distribution defined by

D(p) = {X ∈ Tp Mn
|(n − 1)h(X, Y ) = n 〈X, Y 〉 EH , ∀Y ∈ Tp Mn

},

where EH is the mean curvature vector field and h is the second fundamental form of Mn in
a Riemannian manifold Rm(c) of constant sectional curvature c. If the dimension of D(p) is
constant, it is shown in [5] that the distribution D is completely integrable.
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For minimal submanifolds of Sm(1), the inequality (1) gives an upper bound for δM and
reduces to

δM ≤
1
2
(n + 1)(n − 2).

In this paper we will assume that M is a 3-dimensional minimal CR-submanifold of S6(1)

which satisfies Chen’s basic equality, i.e. δM = 2. In the case that M is Lagrangian a complete
classification has been obtained in [10]. Therefore, we may restrict ourselves here to the case that
M is a proper CR-submanifold. Such submanifolds satisfying Chen’s basic equality have been
previously studied in [17], where the main result states:

Theorem 1. There exist no 3-dimensional proper CR-submanifold in S6(1) satisfying Chen’s
basic equality under the condition that D is totally real.

The main theorem we prove is the following:

Main Theorem. Let M be a 3-dimensional minimal CR-submanifold in S6 satisfying Chen’s
basic equality. Then M is a totally real submanifold or locally M is congruent with the immersion

f (t, u, v) = (cos t cos u cos v, sin t, cos t sin u cos v, cos t cos u sin v, 0,

− cos t sin u sin v, 0). (2)

Remark 1. We notice that (2) can also be described algebraically by the equations

x5 = 0 = x7, x2
1 + x2

2 + x2
3 + x2

4 + x2
6 = 1, x3x4 + x1x6 = 0,

from which we see that it can be seen as a hypersurface lying in a totally geodesic S4(1).

Remark 2. The first example of a 3-dimensional proper CR-submanifold was given by Sekigawa
in [18]. Further examples, including a generalization of Sekigawa’s example and a classification
of those which are an orbit of a 3-dimensional simple subgroup of G2, are given in [16].

Remark 3. It is proved in [6] that a submanifold of complex projective space satisfies Chen’s
basic equality if and only if the submanifold is a totally geodesic complex submanifold. Proper
CR-submanifolds of complex hyperbolic spaces which satisfy the basic equality have been
completely classified in [8].

2. Preliminaries

2.1. The vector cross product and the almost complex structure on S6(1)

We give a brief exposition of how the standard nearly Kähler structure on S6(1) arises in a
natural manner from the Cayley multiplication. For further details about the Cayley numbers and
their automorphism group G2, we refer the reader to [19] and [15].

The multiplication on the Cayley numbers O may be used to define a vector cross product ×

on the purely imaginary Cayley numbers R7 using the formula

u × v =
1
2
(uv − vu), (3)
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while the standard inner product on R7 is given by

(u, v) = −
1
2
(uv + vu). (4)

It is now elementary [15] to show that

u × (v × w) + (u × v) × w = 2(u, w)v − (u, v)w − (w, v)u, (5)

and that the triple scalar product (u × v, w) is skew symmetric in u, v, w.
Conversely, Cayley multiplication on O is given in terms of the vector cross product and the

inner product by

(r + u)(s + v) = rs − (u, v) + rv + su + (u × v), r, s ∈ Re(O), u, v ∈ Im(O). (6)

In view of (3), (4) and (6), it is clear that the group G2 of automorphisms of O is precisely the
group of isometries of R7 preserving the vector cross product.

An ordered orthonormal basis e1, . . . , e7 is said to be a G2-frame if

e3 = e1 × e2, e5 = e1 × e4, e6 = e2 × e4, e7 = e3 × e4. (7)

For example, the standard basis e1, . . . , e7 of R7 is a G2-frame. Moreover, if e1, e2, e4 are
mutually orthogonal unit vectors with e4 orthogonal to e1 ×e2, then e1, e2, e4 determine a unique
G2-frame e1, . . . , e7 and (R7, ×) is generated by e1, e2, e4 subject to the relations:

ei × (e j × ek) + (ei × e j ) × ek = 2δike j − δi j ek − δ jkei . (8)

Therefore, for any G2-frame, we have the following very useful multiplication table [19]:

x e1 e2 e3 e4 e5 e6 e7
e1 0 e3 −e2 e5 −e4 −e7 e6
e2 −e3 0 e1 e6 e7 −e4 −e5
e3 e2 −e1 0 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 0 e1 e2 e3
e5 e4 −e7 e6 −e1 0 −e3 e2
e6 e7 e4 −e5 −e2 e3 0 −e1
e7 −e6 e5 e4 −e3 −e2 e1 0

The standard nearly Kähler structure on S6(1) is then obtained as follows:

Ju = x × u, u ∈ Tx S6(1), x ∈ S6(1).

It is clear that J is an almost complex structure on S6(1). In fact J is a nearly Kähler structure in
the sense that the (2, 1)-tensor field G on S6(1) defined by

G(X, Y ) = (∇̃X J )Y,

where ∇̃ is the Levi-Civita connection on S6(1), is skew-symmetric. A straightforward
computation also shows that

G(X, Y ) = X × Y − 〈x × X, Y 〉x .

For more information on the properties of ·, J and G, we refer to [2] and [11].
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2.2. Minimal submanifolds of a nearly Kähler sphere S6(1) and Chen’s basic equality

Let M be a Riemannian submanifold of a nearly Kähler sphere S6(1) and let us denote by
∇̃ and ∇ the Riemannian connection of S6(1) and M , respectively, and by ∇

⊥ the normal
connection induced from ∇̃ in the normal bundle T ⊥M of M in S6(1). They are related by
the following well-known Gauss equation

∇̃X Y = ∇X Y + h(X, Y ), (9)

for vector fields X , Y tangent to the submanifold, where h denotes the second fundamental form,
and by the Weingarten equation

∇̃Xξ = −Aξ X + ∇
⊥

X ξ (10)

where A is the shape operator and ξ is a normal vector field.
It is well-known that the second fundamental form and the shape operator are related by

〈h(X, Y ), ξ〉 =
〈
Aξ X, Y

〉
. The mean curvature vector EH of the immersion is given by

EH =
1
n

trace h.

A submanifold is said to be minimal if its mean curvature vector vanishes identically.
Denote by R the Riemann curvature tensor of M . Then the equation of Gauss is given by

R(X, Y ; Z , W ) = 〈Y, Z〉 〈X, W 〉 − 〈X, Z〉 〈Y, W 〉

+ 〈h(X, W ), h(Y, Z)〉 − 〈h(X, Z), h(Y, W )〉, (11)

for vectors X, Y, Z , W tangent to M .
First, we recall the following result from [5], which we formulate here in an invariant way

using the previously defined distribution D, for 3-dimensional submanifolds of S6(1):

Lemma 1. Let M be a 3-dimensional submanifold of a nearly Kähler sphere S6(1). Then

δM ≤
9
4

H2
+ 2. (12)

Equality holds at a point p if and only if,

D(p) = {X ∈ Tp M3
|2h(X, Y ) = 3 〈X, Y 〉 EH , ∀Y ∈ Tp Mn

}, (13)

has dimension greater or equal to 1.

We also need the following lemma from [17]:

Lemma 2. Let M be a 3-dimensional minimal CR-submanifold in S6(1). If M satisfies Chen’s
basic equality and D is totally real, then M is a totally real submanifold.

3. Proof of the main theorem

Since a 3-dimensional CR-submanifold is either totally real or proper, from now on we always
assume that M is a 3-dimensional minimal proper CR-submanifold of S6(1) which satisfies
Chen’s equality at every point p ∈ M . In that case, the distribution D becomes the nullity
distribution and we know that at each point p of M , the dimension of D(p) is at least 1. Then,
we have the following lemma:
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Lemma 3. Let M be a 3-dimensional minimal submanifold of a nearly Kähler sphere S6(1)

satisfying Chen’s equality. Then, for any p in M, dimD(p) > 1 if and only p is a totally
geodesic point. Moreover, in a neighborhood of a non-totally geodesic point, the distribution D
is differentiable.

Proof. If at a point p, dimD(p) > 1, as M is minimal, there exists an orthonormal basis
{u1, u2, u3} at the point p such that u2, u3 ∈ D. The definition of D then implies that

h(v, u2) = h(v, u3) = 0,

for any vector v. The minimality of M then implies that h(u1, u1) = 0. Hence p is a totally
geodesic point.

Assume now that dim(D) = 1 in a neighborhood of p and that {u1, u2, u3} is an orthonormal
basis at the point p such that u3 spans D. Then from the Gauss equation and the minimality of
M it follows that

Ric(u1, u1) = Ric(u2, u2) = 1 − ‖h(u1, u1)‖
2
− ‖h(u1, u2)‖

2 < 1

Ric(u1, u2) = Ric(u1, u3) = Ric(u2, u3) = 0

Ric(u3, u3) = 1,

from which it follows that u3 is the unique eigenvector of the Ricci tensor with eigenvalue 1.
As the Ricci tensor is a differentiable operator, its eigenspaces with constant multiplicities are
differentiable. �

Note that it is well known, see for example [13], that there does not exist a totally geodesic
CR-submanifold of S6(1). Therefore the subset of non-totally geodesic points is an open dense
subset of M . In the remainder we will restrict ourselves to this open dense subset. In that case,
we denote by u3 a differentiable unit vector field which spans D. By the theorem of Sasahara,
see Lemma 2 [17], restricting to an open dense subset if necessary, we know that D is not totally
real. Therefore by projecting onto H and normalizing we can define a differentiable vector field
E1.

Since M is a 3-dimensional CR-submanifold in S6(1), it follows that we can choose
orthonormal differentiable vector fields {E1, E2, E3} ∈ Tp M defined on a neighborhood of the
point p, such that {E1, E2 = J E1} ∈ H, E3 ∈ H⊥ and {J E3, E1 × E3, J (E1 × E3)} ∈ T ⊥

p M .
We then introduce local functions a1, . . . , c3 by

∇E1 E1 = a1 E2 + a2 E3, ∇E1 E2 = −a1 E1 + a3 E3, ∇E1 E3 = −a2 E1 − a3 E2,

∇E2 E1 = b1 E2 + b2 E3, ∇E2 E2 = −b1 E1 + b3 E3, ∇E2 E3 = −b2 E1 − b3 E2,

∇E3 E1 = c1 E2 + c2 E3, ∇E3 E2 = −c1 E1 + c3 E3, ∇E3 E3 = −c2 E1 − c3 E2.

By the construction of E1, there exists a differentiable function θ such that

u3 = cos θ E1 + sin θ E3.

We now define

u2 = E2, u1 = − sin θ E1 + cos θ E3, u4 = J E3,

u5 = E1 × E3, u6 = J (E1 × E3).
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Then, using Lemma 1, together with the minimality of M , we see that for M the shape
operators Ar = Aur , r = 4, 5, 6 take the following forms:

Ar =

λr µr 0
µr −λr 0
0 0 0

 (14)

with respect to the tangent basis {u1, u2, u3}.
Now, using (14), it follows that

h(E1, E1) = λ1 sin2 θ J E3 + λ2 sin2 θ E1 × E3 + λ3 sin2 θ J (E1 × E3),

h(E1, E2) = −µ1 sin θ J E3 − µ2 sin θ E1 × E3 − µ3 sin θ J (E1 × E3),

h(E1, E3) = −λ1 sin θ cos θ J E3 − λ2 sin θ cos θ E1 × E3 − λ3 sin θ cos θ J (E1 × E3),

h(E2, E2) = −λ1 J E3 − λ2 E1 × E3 − λ3 J (E1 × E3),

h(E2, E3) = µ1 cos θ J E3 + µ2 cos θ E1 × E3 + µ3 cos θ J (E1 × E3),

h(E3, E3) = λ1 cos2 θ J E3 + λ2 cos2 θ E1 × E3 + λ3 cos2 θ J (E1 × E3).

(15)

Further, putting e1 = p, e2 = E1, e3 = E2 = J E1, e4 = E3, e5 = J E3, e6 = E1 × E3,
e7 = −J (E1 × E3), we conclude that this is at every point a G2-frame and we can at every point
apply the multiplication table given in Section 2.

Next, using the definition of the almost complex structure on S6(1), we have that

DX (E2) = DX (J E1) = DX (p × E1) = X × E1 + p × DX E1,

DX (E4) = DX (J E3) = DX (p × E3) = X × E3 + p × DX E3,

DX (E1 × E3) = DX E1 × E3 + E1 × DX E3,

where D is the standard connection of R7. Expressing the above equations using the formulae
of Gauss (9) and Weingarten (10) together with the multiplication table, we obtain the following
relations between the previously defined functions:

a2 = −µ1 sin θ, a3 = −λ1 sin2 θ,

b2 = −λ1, b3 = µ1 sin θ,

c2 = µ1 cos θ, c3 = λ1 sin θ cos θ,

λ2 = −µ3 sin θ, λ3 = µ2 sin θ,

λ2 sin2 θ = −µ3 sin θ, λ3 sin2 θ = µ2 sin θ,

µ2 cos θ = −1 + λ3 sin θ cos θ, µ3 cos θ = −λ2 sin θ cos θ

(16)

as well as the following expressions for the normal connection ∇
⊥:

∇
⊥

E1
J E3 = (1 + λ3 sin θ cos θ)E1 × E3 − λ2 sin θ cos θ J (E1 × E3),

∇
⊥

E2
J E3 = −µ3 cos θ E1 × E3 + (µ2 cos θ − 1)J (E1 × E3),

∇
⊥

E3
J E3 = −λ3 cos2 θ E1 × E3 + λ2 cos2 θ J (E1 × E3),

∇
⊥

E1
E1 × E3 = (−a1 + λ1 sin θ cos θ)J (E1 × E3) − (λ3 sin θ cos θ + 1)J E3,

∇
⊥

E2
E1 × E3 = −(b1 + µ1 cos θ)J (E1 × E3) + µ3 cos θ J E3,

∇
⊥

E3
E1 × E3 = −(c1 + λ1 cos2 θ)J (E1 × E3) + λ3 cos2 θ J E3,
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∇
⊥

E1
J (E1 × E3) = λ2 sin θ cos θ J E3 + (a1 − λ1 sin θ cos θ)E1 × E3,

∇
⊥

E2
J (E1 × E3) = (1 − µ2 cos θ)J E3 + (b1 + µ1 cos θ)E1 × E3,

∇
⊥

E3
J (E1 × E3) = −λ2 cos2 θ J E3 + (c1 + λ1 cos2 θ)E1 × E3.

Using (16) it follows

λ2(sin2 θ − 1) = 0, λ3(sin2 θ − 1) = 0. (17)

First we interpret the above equations in the case when sin2 θ = 1, i.e. cos θ = 0. Then it
follows that u3 = ±E3, which implies that u3 is a totally real subspace. Since D = {u3}, using
Lemma 2 [17] a contradiction follows.

Now, we restrict ourselves to the case when sin2 θ 6= 1. Then it follows from (17) that
λ2 = λ3 = 0. Further, from (16), it follows µ2 = 0 or sin θ = 0. Since µ2 = 0 gives
a contradiction, it follows that sin θ = 0 and therefore, a2 = a3 = b3 = c3 = µ3 = 0,
b2 = −λ1, c2 = µ1, µ2 = −1. Now, by a straightforward computation, using (15), we obtain
that there exist orthonormal vector fields {E1, E2, E3} defined on a neighborhood of the point p
and differentiable functions λ1, µ1 such that:

h(E1, E1) = h(E1, E2) = h(E1, E3) = 0

h(E2, E2) = −λ1 J E3, h(E2, E3) = µ1 J E3 − E1 × E3

h(E3, E3) = λ1 J E3.

(18)

Now, using the Codazzi equation which states that (∇h)(X, Y, Z) = (∇X h)(Y, Z) =

∇
⊥

X h(Y, Z) − h(∇X Y, Z) − h(Y, ∇X Z) is totally symmetric in X , Y and Z , we can prove the
following

Lemma 4. Let {E1, E2, E3} be the local orthogonal basis defined previously. Then λ1 = 0 and
the function µ1 has to satisfy the following system of differential equations:

E1(µ1) = −1 − µ2
1, E2(µ1) = 0, E3(µ1) = 0. (19)

Proof. For example, it follows from the Codazzi equation (∇E1 h)(E2, E2) = (∇E2 h)(E1, E2)

that

E1(λ1) = −λ1(b1 + µ1). (20)

Further, it follows from the Codazzi equation (∇E1 h)(E3, E3) = (∇E3 h)(E1, E3) that

E1(λ1) = −2λ1µ1, λ1 = c1. (21)

Combining (20) and (21) it then follows that

λ1 = 0 or b1 = µ1. (22)

The remaining equations follow similarly from the other Codazzi equations. �

Summarizing the above results, we see that we can express the components of the connection
∇ by

∇E1 E1 = 0, ∇E1 E2 = 0, ∇E1 E3 = 0,

∇E2 E1 = µ1 E2, ∇E2 E2 = −µ1 E1, ∇E2 E3 = 0,

∇E3 E1 = µ1 E3, ∇E3 E2 = 0, ∇E3 E3 = −µ1 E1,

(23)
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and we obtain that the second fundamental form is given by h(E1, E1) = h(E1, E2) =

h(E1, E3) = h(E2, E2) = h(E3, E3) = 0, h(E2, E3) = µ1 J E3 − E1 × E3. It is straightforward
to compute that substituting these values into the Gauss equation or the Ricci equation does not
yield any new conditions.

Finally, we are now ready to introduce coordinates and construct the corresponding CR-
submanifold of S6(1). We look at the following system of differential equations for ρ:

E1(ρ) = ρµ1, E2(ρ) = 0, E3(ρ) = 0. (24)

As [E1, E2] = −µ1 E2, [E1, E3] = −µ1 E3 and [E2, E3] = 0, it can be verified easily that all
integrability conditions for ρ are satisfied.

Hence a solution to the above system (24) exists. As [E1, ρE2] = [ρE2, ρE3] = [E1, ρE3] =

0, it follows that there exist coordinates (t, u, v) in a neighborhood of p ∈ M , such that ∂
∂t = E1,

∂
∂u = ρE2, ∂

∂v
= ρE3 and p corresponds to (0, 0, 0). Using (19) and (24), it follows if necessary

after translating the coordinate t that

µ1 = − tan t, ρ = cos t. (25)

Now, let f : M → S6(1) ⊂ R7 be a CR-immersion of a 3-dimensional minimal manifold
satisfying Chen’s basic equality. Rewriting now the formulae of Gauss (9) and Weingarten (10)
using the coordinates (t, u, v), we obtain

ft t = − f, (26)

ftu = µ1 fu, (27)

ftv = µ1 fv, (28)

fuu = −µ1ρ
2 ft − ρ2 f, (29)

fuv = ρ(µ1 f × fv − ft × fv), (30)

fvv = −ρ2(µ1 ft + f ). (31)

Now, using (26), it follows

f (t, u, v) = A(u, v) cos t + B(u, v) sin t. (32)

Substituting the expression (32) for f in (27) and (28), we obtain that B is a constant vector
in R7. Using now (29), we get

A(u, v) = cos u C(v) + sin u D(v). (33)

Repeating the similar procedure and using (30) and (31), we obtain B × D′(v) = C ′(v), B ×

C ′(v) = −D′(v) and C ′′(v) = −C(v), D′′(v) = −D(v). Therefore, C(v) = cos v I + sin v K
and D(v) = cos v L + sin v M , where I, K , L , M ∈ R7 such that B × L = I , B × M = K ,
B × I = −L and B × K = −M . Therefore, (32) and (33) imply that we can write

f (t, u, v) = B sin t + cos t cos u(cos v I + sin vK ) + cos t sin u(cos vL + sin vM). (34)

Choosing the initial conditions f (0, 0, 0) = u1 = I , E1(0, 0, 0) = u2 = B, E2(0, 0, 0) = u3 =

L , E3(0, 0, 0) = u4 = K and M = −u6, we obtain Eq. (2).
On the other hand, using (2), a straightforward computation shows that the converse of the

Main Theorem is obvious.
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